High-definition television (or HDTV) is a digital television broadcasting system with higher resolution than traditional television systems (standard-definition TV, or SDTV). HDTV is digitally broadcast; the earliest implementations used analog broadcasting, but today digital television (DTV) signals are used, requiring less bandwidth due to digital video compression.


High-definition display resolutions

Video format supported Native resolution (W×H) Pixels Aspect ratio (W:H) Description
Actual Advertised (Mpixel) Image Pixel
720p
1280×720
1024×768
XGA
786,432 0.8 16:9 4:3 Typically a PC resolution (XGA); also a native resolution on many entry-level plasma displays with non-square pixels.
1280×720 921,600 0.9 16:9 1:1 Standard HDTV resolution and a typical PC resolution (WXGA), frequenlty used by video projectors; also used for 750-line video, as defined in SMPTE 296M, ATSC A/53, ITU-R BT.1543.
1366×768
WXGA
1,049,088 1.0 683:384
(approx. 16:9)
1:1
approx.
A typical PC resolution (WXGA); also used by many HD ready TV displays based on LCD technology.
1080p/1080i
1920×1080
1920×1080 2,073,600 2.1 16:9 1:1 Standard HDTV resolution, used by Full HD and HD ready 1080p TV displays such as high-end LCD, Plasma and rear projection TVs, and a typical PC resolution (lower than WUXGA); also used for 1125-line video, as defined in SMPTE 274M, ATSC A/53, ITU-R BT.709;
Video format supported Screen resolution (W×H) Pixels Aspect ratio (W:H) Description
Actual Advertised (Mpixel) Image Pixel
720p
1280×720
1248×702
Clean Aperture
876,096 0.9 16:9 1:1 Used for 750-line video with raster artifact/overscan compensation, as defined in SMPTE 296M.
1080p
1920×1080
1888×1062
Clean aperture
2,001,280 2.0 16:9 1:1 Used for 1125-line video with faster artifact/overscan compensation, as defined in SMPTE 274M.
1080i
1920×1080
1440×1080
HDCAM/HDV
1,555,200 1.6 4:3 4:3:1 Used for anamorphic 1125-line video in the HDCAM and HDV formats introduced by Sony and defined (also as a luminance subsampling matrix) in SMPTE D11.

 

Standard frame or field rates

  • 23.976 Hz (film-looking frame rate compatible with NTSC clock speed standards)
  • 24 Hz (international film and ATSC high definition material)
  • 25 Hz (PAL, SECAM film, standard definition, and high definition material)
  • 29.97 Hz (NTSC standard definition material)
  • 50 Hz (PAL & SECAM high definition material))
  • 60 Hz (ATSC high definition material)

At a minimum, HDTV has twice the linear resolution of standard-definition television (SDTV), thus showing greater detail than either analog television or regular DVD. The technical standards for broadcasting HDTV also handle the 16:9 aspect ratio images without using letterboxing or anamorphic stretching, thus increasing the effective image resolution.

The optimum format for a broadcast depends upon the type of videographic recording medium used and the image’s characteristics. The field and frame rate should match the source and the resolution. A very high resolution source may require more bandwidth than available in order to be transmitted without loss of fidelity. The lossy compression that is used in all digital HDTV storage and transmission systems will distort the received picture, when compared to the uncompressed source.

Recording and compression

HDTV can be recorded to D-VHS (Digital-VHS or Data-VHS), W-VHS (analog only), to an HDTV-capable digital video recorder (for example DirecTV’s high-definition Digital video recorder, Sky HD’s set-top box, Dish Network’s VIP 622 or VIP 722 high-definition Digital video recorder receivers, or TiVo’s Series 3 or HD recorders), or an HDTV-ready HTPC. Some cable boxes are capable of receiving or recording two or more broadcasts at a time in HDTV format, and HDTV programming, some free, some for a fee, can be played back with the cable company’s on-demand feature.

The massive amount of data storage required to archive uncompressed streams meant that inexpensive uncompressed storage options were not available in the consumer market until recently. In 2008 the Hauppauge 1212 Personal Video Recorder was introduced. This device accepts HD content through component video inputs and stores the content in an uncompressed MPEG transport stream (.ts) file or Blu-ray format .m2ts file on the hard drive or DVD burner of a computer connected to the PVR through a USB 2.0 interface.

Realtime MPEG-2 compression of an uncompressed digital HDTV signal is prohibitively expensive for the consumer market at this time, but should become inexpensive within several years (although this is more relevant for consumer HD camcorders than recording HDTV). Analog tape recorders with bandwidth capable of recording analog HD signals such as W-VHS recorders are no longer produced for the consumer market and are both expensive and scarce in the secondary market.

In the United States, as part of the FCC’s plug and play agreement, cable companies are required to provide customers who rent HD set-top boxes with a set-top box with "functional" Firewire (IEEE 1394) upon request. None of the direct broadcast satellite providers have offered this feature on any of their supported boxes, but some cable TV companies have. As of July 2004, boxes are not included in the FCC mandate. This content is protected by encryption known as 5C. This encryption can prevent duplication of content or simply limit the number of copies permitted, thus effectively denying most if not all fair use of the content.

Table of terrestrial HDTV transmission systems

Main characteristics of three HDTV systems
Systems ATSC DVB-T ISDB-T
Source coding
Video Main Profile syntax of ISO/IEC 13818-2 (MPEG-2 – Video)
Audio ATSC Standard A/52 (Dolby AC-3) As defined in ETSI DVB TS 101 154 – as H.264 AVC and/or ISO/IEC 13818-3 (MPEG-2 – Layer II Audio) and/or Dolby AC-3 ISO/IEC 13818-7 (MPEG-2 – AAC Audio)
Transmission system
Channel coding
Outer coding R-S (207, 187, t = 10) R-S (204, 188, t = 8)
Outer interleaver 52 R-S block convolutional (I=12, M=17, J=1) 12 R-S block
Inner coding rate 2/3 Trellis code Punctured convolution code(PCC): rate 1/2, 2/3, 3/4, 5/6, 7/8; constraint length = 7, Polynomials (octal) = 171, 133
Inner interleaver 12 to 1 Trellis code bit-wise, frequency, selectable time
Data randomization 16-bit PRBS
Modulation 8VSB (Only used for over the air transmission)
16VSB (Designed for cable, but rejected by the cable industry, cable TV uses 64QAM or 256QAM modulation as a de facto standard)
COFDM
QPSK, 16QAM and 64QAM
Hierarchical modulation: multi-resolution constellation (16QAM and 64QAM)
Guard interval: 1/32, 1/16, 1/8 & 1/4 of OFDM symbol
Two modes: 2k and 8k FFT
BST-COFDM with 13 frequency segments
DQPSK, QPSK, 16QAM and 64QAM
Hierarchical modulation: choice of three different modulations on each segment
Guard interval: 1/32, 1/16, 1/8 & 1/4 of OFDM symbol
Three modes: 2k, 4k and 8k FFT

 

 

 

Related Articles